Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 10(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959526

RESUMO

Culicoides midges (Diptera: Ceratopogonidae), the vectors of economically important arboviruses such as bluetongue virus and African horse sickness virus, are of global importance. In the absence of transovarial transmission, the parity rate of a Culicoides population provides imperative information regarding the risk of virus dispersal. Abdominal pigmentation, which develops after blood feeding and ovipositioning, is used as an indicator of parity in Culicoides. During oral susceptibility trials over the last three decades, a persistent proportion of blood engorged females did not develop pigment after incubation. The present study, combining a number of feeding trials and different artificial feeding methods, reports on this phenomenon, as observed in various South African and Italian Culicoides species and populations. The absence of pigmentation in artificial blood-fed females was found in at least 23 Culicoides species, including important vectors such as C. imicola, C. bolitinos, C. obsoletus, and C. scoticus. Viruses were repeatedly detected in these unpigmented females after incubation. Blood meal size seems to play a role and this phenomenon could be present in the field and requires consideration, especially regarding the detection of virus in apparent "nulliparous" females and the identification of overwintering mechanisms and seasonally free vector zones.

2.
PLoS Negl Trop Dis ; 15(11): e0009989, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843478

RESUMO

BACKGROUND: Glossina austeni and Glossina brevipalpis (Diptera: Glossinidae) are the sole cyclical vectors of African trypanosomes in South Africa, Eswatini and southern Mozambique. These populations represent the southernmost distribution of tsetse flies on the African continent. Accurate knowledge of infested areas is a prerequisite to develop and implement efficient and cost-effective control strategies, and distribution models may reduce large-scale, extensive entomological surveys that are time consuming and expensive. The objective was to develop a MaxEnt species distribution model and habitat suitability maps for the southern tsetse belt of South Africa, Eswatini and southern Mozambique. METHODOLOGY/PRINCIPAL FINDINGS: The present study used existing entomological survey data of G. austeni and G. brevipalpis to develop a MaxEnt species distribution model and habitat suitability maps. Distribution models and a checkerboard analysis indicated an overlapping presence of the two species and the most suitable habitat for both species were protected areas and the coastal strip in KwaZulu-Natal Province, South Africa and Maputo Province, Mozambique. The predicted presence extents, to a small degree, into communal farming areas adjacent to the protected areas and coastline, especially in the Matutuíne District of Mozambique. The quality of the MaxEnt model was assessed using an independent data set and indicated good performance with high predictive power (AUC > 0.80 for both species). CONCLUSIONS/SIGNIFICANCE: The models indicated that cattle density, land surface temperature and protected areas, in relation with vegetation are the main factors contributing to the distribution of the two tsetse species in the area. Changes in the climate, agricultural practices and land-use have had a significant and rapid impact on tsetse abundance in the area. The model predicted low habitat suitability in the Gaza and Inhambane Provinces of Mozambique, i.e., the area north of the Matutuíne District. This might indicate that the southern tsetse population is isolated from the main tsetse belt in the north of Mozambique. The updated distribution models will be useful for planning tsetse and trypanosomosis interventions in the area.


Assuntos
Glossinidae/fisiologia , Controle de Insetos/métodos , Insetos Vetores/fisiologia , Distribuição Animal , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Ecossistema , Essuatíni/epidemiologia , Glossinidae/classificação , Insetos Vetores/classificação , Moçambique/epidemiologia , África do Sul/epidemiologia
3.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696407

RESUMO

Culicoides-borne viruses such as bluetongue, African horse sickness, and Schmallenberg virus cause major economic burdens due to animal outbreaks in Africa and their emergence in Europe and Asia. However, little is known about the role of Culicoides as vectors for zoonotic arboviruses. In this study, we identify both veterinary and zoonotic arboviruses in pools of Culicoides biting midges in South Africa, during 2012-2017. Midges were collected at six surveillance sites in three provinces and screened for Alphavirs, Flavivirus, Orthobunyavirus, and Phlebovirus genera; equine encephalosis virus (EEV); and Rhaboviridae, by reverse transcription polymerase chain reaction. In total, 66/331 (minimum infection rate (MIR) = 0.4) pools tested positive for one or more arbovirus. Orthobunyaviruses, including Shuni virus (MIR = 0.1) and EEV (MIR = 0.2) were more readily detected, while only 2/66 (MIR = 0.1) Middelburg virus and 4/66 unknown Rhabdoviridae viruses (MIR = 0.0) were detected. This study suggests Culicoides as potential vectors of both veterinary and zoonotic arboviruses detected in disease outbreaks in Africa, which may contribute to the emergence of these viruses to new regions.


Assuntos
Arbovírus/patogenicidade , Ceratopogonidae/virologia , Insetos Vetores/virologia , Animais , Ceratopogonidae/patogenicidade , Dípteros/patogenicidade , Surtos de Doenças , Insetos Vetores/patogenicidade , África do Sul/epidemiologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/prevenção & controle
4.
Acta Trop ; 219: 105913, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33831346

RESUMO

Biting midges in the genus Culicoides (Diptera; Ceratopogonidae) are vectors of pathogens that can cause diseases of major economic importance in humans and animals. Identifying host ranges of these biting midges might aid in understanding the complex epidemiology of such diseases, often involving reservoir hosts and multiple species. In this study, we aim to identify bloodmeal origin from engorged female Culicoides biting midges. All bloodfed females were opportunistically collected as part of an ongoing surveillance programme using Onderstepoort light traps in two provinces in South Africa. DNA of individuals was extracted and subjected to PCR targeting the cytochrome B (CytB) gene region of mammals and avians as well as cytochrome oxidase I (COI) for species identification. In total, 21 new reference barcodes were generated for C. bedfordi, C imicola, C. leucosticus, C. magnus, and C. pycnostictus. Seventy-four blood meals were identified, originating from 12 mammal and three avian species. COI sequence data performed well for species delimitation and 54 Culicoides specimens were identified with C. imicola the predominant species identified (41.8%). Generally, Culicoides species feed on a variety of hosts and host availability might be an important factor when selecting a host. Culicoides species thus appear to be opportunistic feeders rather than specialists. This implicates Culicoides as transfer vectors and demonstrates possible transmission routes of arboviruses and other pathogens from wildlife onwards to domestic animals and humans.


Assuntos
Sangue/parasitologia , Ceratopogonidae/classificação , Citocromos b/genética , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Animais , Arbovírus/fisiologia , Ceratopogonidae/genética , Feminino , Especificidade de Hospedeiro , Humanos , Insetos Vetores/genética , África do Sul
6.
Parasit Vectors ; 14(1): 100, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557932

RESUMO

BACKGROUND: Culicoides imicola (Diptera: Ceratopogonidae) is an important Afrotropical and Palearctic vector of disease, transmitting viruses of animal health and economic significance including African horse sickness and bluetongue viruses. Maternally inherited symbiotic bacteria (endosymbionts) of arthropods can alter the frequency of COI (cytochrome c oxidase subunit I) mitochondrial haplotypes (mitotypes) in a population, masking the true patterns of host movement and gene flow. Thus, this study aimed to assess the mtDNA structure of C. imicola in relation to infection with Candidatus Cardinum hertigii (Bacteroides), a common endosymbiont of Culicoides spp. METHODS: Using haplotype network analysis, COI Sanger sequences from Cardinium-infected and -uninfected C. imicola individuals were first compared in a population from South Africa. The network was then extended to include mitotypes from a geographic range where Cardinium infection has previously been investigated. RESULTS: The mitotype network of the South African population demonstrated the presence of two broad mitotype groups. All Cardinium-infected specimens fell into one group (Fisher's exact test, P = 0.00071) demonstrating a linkage disequilibrium between endosymbiont and mitochondria. Furthermore, by extending this haplotype network to include other C. imicola populations from the Mediterranean basin, we revealed mitotype variation between the Eastern and Western Mediterranean basins (EMB and WMB) mirrored Cardinium-infection heterogeneity. CONCLUSIONS: These observations suggest that the linkage disequilibrium of Cardinium and mitochondria reflects endosymbiont gene flow within the Mediterranean basin but may not assist in elucidating host gene flow. Subsequently, we urge caution on the single usage of the COI marker to determine population structure and movement in C. imicola and instead suggest the complementary utilisation of additional molecular markers.


Assuntos
Infecções Bacterianas/transmissão , Ceratopogonidae/genética , Ceratopogonidae/microbiologia , DNA Mitocondrial/genética , Insetos Vetores/microbiologia , Simbiose , Animais , Bacteroidetes/genética , DNA Mitocondrial/química , Fluxo Gênico , Cavalos , Região do Mediterrâneo , Filogenia , Filogeografia , Análise de Sequência de DNA , África do Sul
7.
Vet Ital ; 57(4): 341-345, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35593492

RESUMO

Following the emerging bluetongue virus transmission in European temperate regions, we question the vector competence of the abundant Culicoides austropalpalis Lee and Reye in South-East temperate Australia. Field collected Culicoides midges were membrane fed with a bluetongue virus serotype 1 (BTV-1). The average feeding rate was 50%. After 13 days, survival rate was 25% and virus RNA presence was checked by quantitative PCR targeting viral genome segment 10. Virus RNA was found in 7.4% of individually tested females with relative viral RNA load values lower than freshly fed females, indicating that viral replication was low or null. A second qPCR targeting viral genome segment 1 confirmed the presence of virus RNA in only four out of 29 previously positive specimens. After 10 days culture on Culicoides cells, none of these four confimed positive samples did show subsequent cytopathogenic effect on Vero cells or BTV antigen detection by ELISA. As control for this virus activity detection, 12 days after microinjection of BTV-1, Culex annulirostris mosquitoes showed, after culture on Kc cells, cytopathogenic effect on Vero cells, with ELISA-confirmed infection. Despite its abundance in farm environment of the temperate Australian regions, the results of this study make C. austropalpalis of unlikely epidemiological importance in the transmission of BTV in Australia.


Assuntos
Vírus Bluetongue , Bluetongue , Ceratopogonidae , Doenças dos Ovinos , Animais , Vírus Bluetongue/genética , Chlorocebus aethiops , Fazendas , Feminino , Mosquitos Vetores , RNA Viral , Ovinos , Células Vero , Vitória
8.
Parasitology ; 147(14): 1728-1742, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32867864

RESUMO

We studied the compositional turnover in infracommunities and component communities of ecto- and endoparasites infesting a bat, Miniopterus natalensis (Chiroptera, Miniopteridae), across seven sampling sites using the zeta diversity metric (measuring similarity between multiple communities) and calculating zeta decline and retention rate (both scales) and zeta decay (component communities). We asked whether the patterns of zeta diversity differ between (a) infracommunities and component communities; (b) ecto- and endoparasites and (c) subsets of communities infecting male and female bats. The pattern of compositional turnover differed between infracommunities and component communities in endoparasites only. The shape of zeta decline for infracommunities indicated that there were approximately equal probabilities of ecto- and endoparasitic species to occur on/in any bat individual within a site. The shape of zeta decline for component communities suggested the stochasticity of ectoparasite turnover, whereas the turnover of endoparasites was driven by niche-based processes. Compositional turnover in component communities of ectoparasites was more spatially dependent than that of endoparasites. Spatial independence of compositional turnover in endoparasites was due to subcommunities harboured by female bats. We conclude that the patterns of compositional turnover in infracommunities were similar in ecto- and endoparasites, whereas the patterns of turnover in component communities differed between these groups.


Assuntos
Biodiversidade , Quirópteros , Ectoparasitoses/veterinária , Helmintíase Animal/epidemiologia , Animais , Cestoides/isolamento & purificação , Dípteros , Ectoparasitoses/epidemiologia , Ectoparasitoses/parasitologia , Feminino , Helmintíase Animal/parasitologia , Masculino , Ácaros , Nematoides/isolamento & purificação , Sifonápteros , África do Sul/epidemiologia , Carrapatos , Trematódeos/isolamento & purificação
9.
Insects ; 11(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796748

RESUMO

An area-wide integrated pest management (AW-IPM) strategy with a sterile insect technique (SIT) component has been proposed for the management of African animal trypanosomosis (AAT) in South Africa. In preparation for the SIT, the mating performance of colony reared Glossina austeni males under influencing factors such as radiation dose and the development stage that is exposed to radiation, was assessed under laboratory and semi-field conditions. The radiation sensitivity of G. austeni colonized 37 years ago when treated as adults and late-stage pupae was determined. Radiation doses of 80 Gy and 100 Gy induced 97-99% sterility in colony females that mated with colony males treated as adults or pupae. Males irradiated either as adults or pupae with a radiation dose of 100 Gy showed similar insemination ability and survival as untreated males. Walk-in field cage assessments indicated that a dose of up to 100 Gy did not adversely affect the mating performance of males irradiated as adults or late stage pupae. Males irradiated as adults formed mating pairs faster than fertile males and males irradiated as pupae. The mating performance studies indicated that the colonized G. austeni males irradiated as adults or late stage pupae will still be suited for SIT.

10.
Onderstepoort J Vet Res ; 86(1): e1-e8, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31714137

RESUMO

The effective control of tsetse flies (Diptera; Glossinidae), the biological vectors of trypanosome parasites that cause human African trypanosomosis and African animal trypanosomosis throughout sub-Saharan Africa, is crucial for the development of productive livestock systems. The degree of genetic isolation of the targeted populations, which indicate reinvasion potential from uncontrolled areas, will be critical to establish a control strategy. Molecular and morphometrics markers were used to assess the degree of genetic isolation between seemingly fragmented populations of Glossina brevipalpis Newstead and Glossina austeni Newstead present in South Africa. These populations were also compared with flies from adjacent areas in Mozambique and Eswatini. For the molecular markers, deoxyribonucleic acid was extracted, a r16S2 Polymerase chain reaction (PCR) was performed and the PCR product sequenced. Nine landmarks were used for the morphometrics study as defined by vein intersections in the right wings of female flies. Generalised Procrustes analyses and regression on centroid size were used to determine the Cartesian coordinates for comparison between populations. Both methods indicated an absence of significant barriers to gene flow between the G. brevipalpis and G. austeni populations of South Africa and southern Mozambique. Sustainable control can only be achieved if implemented following an area-wide management approach against the entire G. brevipalpis and G. austeni populations of South Africa and southern Mozambique. Limited gene flow detected between the G. austeni population from Eswatini and that of South Africa or Mozambique may imply that these two populations are in the proses of becoming isolated.


Assuntos
Moscas Tsé-Tsé/anatomia & histologia , Moscas Tsé-Tsé/genética , Animais , Essuatíni , Marcadores Genéticos , Moçambique , Fenótipo , África do Sul
11.
Parasit Vectors ; 12(1): 4, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606269

RESUMO

BACKGROUND: Insight into the factors that regulate the circadian host-seeking flight activity of Culicoides vectors (Diptera: Ceratopogonidae) will be of importance to assess the risk of transmission of Culicoides-borne pathogens. This study aimed to determine the impact of temperature and humidity on the flight activity of Culicoides imicola Kieffer, and other livestock associated Culicoides species, under both laboratory and field conditions. METHODS: Batches of 500 field-collected C. imicola females were acclimatized at a predetermined range of temperatures (10-29 °C) and relative humidity (34-85%). After acclimatization, these females, prompted by a light source, were allowed to escape through a transparent plastic funnel into a paper cup, where they were counted after an hour. Flight activity under field conditions was determined seasonally by hourly light trap collections done overnight at four sites near cattle. RESULTS: Experiments conducted at various test conditions in the laboratory indicated that flight activity started at 13 °C. Peak in activity was observed between 16 °C to 18 °C, and temperatures above 20 °C seemingly inhibit flight. Under field conditions, a peak in numbers collected was observed immediately after sunset. With mean nocturnal temperatures below 19 °C, more than 74% of the Culicoides were collected within two to three hours after sunset. With mean nocturnal temperature above 19 °C, the peak in numbers at sunset was sustained until after midnight, with somewhat higher numbers collected after midnight once temperatures dropped below 20 °C. No peak in numbers was observed at dawn. Although very low numbers were collected during the day, which partly may have been a result of the collecting method, Culicoides were present throughout periods of 24 hours. Humidity seemed to play a minor role in the regulation of flight activity. CONCLUSIONS: Abundance and species diversity results as obtained in this study indicated a high level of risk of virus transmission in the first hours following sunset. A strong relationship was found between host-seeking activity, and hence trap efficiency, and within limits, temperature. Light traps primarily measure flight activity and may as such underestimate adult abundance of C. imicola if deployed at temperatures outside thresholds of 16-20 °C.


Assuntos
Ceratopogonidae/fisiologia , Comportamento de Busca por Hospedeiro , Insetos Vetores/fisiologia , Aclimatação , Animais , Bovinos , Feminino , Voo Animal , Umidade , Luz , Temperatura
12.
Transbound Emerg Dis ; 66(2): 743-751, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30449073

RESUMO

An outbreak of African horse sickness (AHS) caused by AHS virus type 1 occurred within the South African AHS surveillance zone during April and May 2016. The index case was detected by a private veterinarian through passive surveillance. There were 21 cases in total, which is relatively low compared to case totals during prior AHS outbreaks in the same region (and of the same AHS virus type) in 2004, 2011 and 2014. The affected proportion of horses on affected properties was 0.07 (95% CI 0.04, 0.11). Weather conditions were conducive to high midge activity immediately prior to the outbreak but midge numbers decreased rapidly with the advent of winter. The outbreak was localized, with 18 of the 21 cases occurring within 8 km of the index property and the three remaining cases on two properties within 21 km of the index property, with direction of spread consistent with wind-borne dispersion of infected midges. Control measures included implementation of a containment zone with movement restrictions on equids. The outbreak was attributed to a reversion to virulence of a live attenuated vaccine used extensively in South Africa. Outbreaks in the AHS control zones have a major detrimental impact on the direct export of horses from South Africa, notably to the European Union.


Assuntos
Vírus da Doença Equina Africana/imunologia , Vírus da Doença Equina Africana/patogenicidade , Doença Equina Africana/epidemiologia , Surtos de Doenças/veterinária , Vacinas Virais/administração & dosagem , Doença Equina Africana/virologia , Animais , Ceratopogonidae/fisiologia , Feminino , Cavalos , Masculino , Estações do Ano , África do Sul/epidemiologia , Vacinas Atenuadas/administração & dosagem , Virulência
13.
Vet Ital ; 54(4): 343-348, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30681134

RESUMO

A  serosurvey  was  conducted  to  determine  the  value  of  camels  (Camelus  dromedaries)  as sentinel animals for the detection of bluetongue virus (BTV) in Morocco. Between 2010 and 2013, camels from various localities in Morocco were randomly tested for antibodies against BTV  serotypes­1,  ­4,  ­6,  ­8,  ­11,  ­14,  and  ­16.  Antibodies  against  1  or  more  serotypes  were detected in 41.8% of 537 camels tested with a competitive enzyme­linked immunosorbent assay  (ELISA)  diagnostic  test.  Of  the  7  tested  serotypes,  only  BTV­11  antibodies  were  not detected with serum neutralisation assays. This study not only confirms the epidemiological presence of BTV­1, ­4, and ­8 in Morocco, but also presents the first evidence of BTV­6, ­14, and ­16 in the country. As such, we conclude that camels would be ideal sentinel animals to determine the potential risk of BTV in Morocco.


Assuntos
Vírus Bluetongue/isolamento & purificação , Bluetongue/epidemiologia , Camelus , Espécies Sentinelas/virologia , Vigilância de Evento Sentinela/veterinária , Animais , Bluetongue/virologia , Marrocos/epidemiologia , Prevalência , Medição de Risco , Estudos Soroepidemiológicos
14.
BMC Vet Res ; 13(1): 283, 2017 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-28886712

RESUMO

BACKGROUND: African horse sickness (AHS) is of importance to health and international trade in horses worldwide. During export from and transit through AHS endemic countries or zones, physical and chemical measures to protect horses from the vectors of AHS virus (AHSV) are recommended by the World Organization for Animal Health. Protection of containerized air transport systems for horses (jet stalls) with alphacypermethrin insecticide-treated high density polyethylene mesh is effective in reducing the Culicoides midge vector attack rate. In order to determine the effect of this mesh on jet stall ventilation and horse welfare under temperate climatic conditions, jet stall microclimate, clinical variables and faecal glucocorticoid metabolite (FGM) levels of 12 horses were monitored during overnight housing in either a treated or untreated stall in two blocks of a 2 × 3 randomized crossover design. RESULTS: Temperature difference between the treated stall and outside was significantly higher than the difference between the untreated stall and outside at 1/15 time points only (P = 0.045, r = 0.70). Relative humidity (RH) difference between the treated stall and outside did not differ from the untreated stall and outside. Temperature and RH in the treated stall were highly and significantly correlated with outside temperature (r = 0.96, P < 0.001) and RH (r = 0.95, P < 0.001), respectively. No significant differences were detected between rectal temperatures, pulse and respiratory rates of horses in the treated stall compared to the untreated stall. Mean FGM concentrations for horses housed in the treated stall peaked earlier (24 h) and at a higher concentration than horses housed in the untreated stall (48 h), but were not significantly different from baseline. No significant difference was detected in FGM concentrations when the treated and untreated stall groups were compared at individual time points up to 72 h after exiting the jet stall. CONCLUSIONS: Alphacypermethrin-treated HDPE mesh could be used under temperate climatic conditions to protect horses in jet stalls against AHSV vectors, without compromising jet stall microclimate and horse welfare.


Assuntos
Vírus da Doença Equina Africana/fisiologia , Aeronaves , Ceratopogonidae/efeitos dos fármacos , Mordeduras e Picadas de Insetos/veterinária , Insetos Vetores/efeitos dos fármacos , Piretrinas/farmacologia , Animais , Fezes/química , Cavalos , Mordeduras e Picadas de Insetos/prevenção & controle , Inseticidas/administração & dosagem , Inseticidas/farmacologia , Piretrinas/química , Meios de Transporte
15.
Vet Ital ; 53(2): 157-166, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28675253

RESUMO

The efficacy of sweep nets and a CDC white light-suction trap for the sampling of Culicoides species (Diptera: Ceratopogonidae) were compared on a livestock farm in Northern Spain during the Summer of 2013. A total of 6,082 specimens representing 26 species were collected with sweep nets in 4 areas at di erent heights (ground level, 1.5 m, and 3 m), and 8,463 specimens representing 28 species with a single white light trap. Eight species - Culicoides brunnicans, Culicoides punctatus, Culicoides obsoletus/Culicoides scoticus, Culicoides lupicaris, Culcoides picturatus, Culicoides achrayi, and Culicoides simulator - were dominant and accounted for 97.4% and 97.2% of the total specimens collected with both methods, sweep nets, and light traps, respectively. The sex ratios with sweep netting and light trapping were strongly female biased (78.4% and 97.1%, respectively). Nulliparous and parous females were predominantly captured with both methods. A high percentage (17%) of gravid females was, however, captured on manure at ground level while sweeping. Searches for male swarms revealed the presence of several C. punctatus swarms consisting of 26 to 196 males and 3 swarms of C. obsoletus that ranged from 1 to 12 males in size. This study suggested that both methods are suitable and complementary tools for Culicoides sampling.


Assuntos
Ceratopogonidae/fisiologia , Insetos Vetores/fisiologia , Animais , Comportamento Animal/fisiologia , Fazendas , Feminino , Gado , Masculino , Fatores Sexuais , Espanha
16.
PLoS Negl Trop Dis ; 11(3): e0005473, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306730

RESUMO

BACKGROUND: Area-wide integrated pest management strategies that include a sterile insect technique component have been successfully used to eradicate tsetse fly populations in the past. To ensure the success of the sterile insect technique, the released males must be adequately sterile and be able to compete with their native counterparts in the wild. METHODOLOGY/PRINCIPAL FINDINGS: In the present study the radiation sensitivity of colonised Glossina brevipalpis Newstead (Diptera; Glossinidae) males, treated either as adults or pupae, was assessed. The mating performance of the irradiated G. brevipalpis males was assessed in walk-in field cages. Glossina brevipalpis adults and pupae were highly sensitive to irradiation, and a dose of 40 Gy and 80 Gy induced 93% and 99% sterility respectively in untreated females that mated with males irradiated as adults. When 37 to 41 day old pupae were exposed to a dose of 40 Gy, more than 97% sterility was induced in untreated females that mated with males derived from irradiated pupae. Males treated as adults with a dose up to 80 Gy were able to compete successfully with untreated fertile males for untreated females in walk-in field cages. CONCLUSIONS/SIGNIFICANCE: The data emanating from this field cage study indicates that, sterile male flies derived from the colony of G. brevipalpis maintained at the Agricultural Research Council-Onderstepoort Veterinary Institute in South Africa are potential good candidates for a campaign that includes a sterile insect technique component. This would need to be confirmed by open field studies.


Assuntos
Tolerância a Radiação , Comportamento Sexual Animal , Moscas Tsé-Tsé/fisiologia , Moscas Tsé-Tsé/efeitos da radiação , Animais , Infertilidade Masculina , Masculino , África do Sul
17.
Annu Rev Entomol ; 62: 343-358, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28141961

RESUMO

African horse sickness virus (AHSV) is a lethal arbovirus of equids that is transmitted between hosts primarily by biting midges of the genus Culicoides (Diptera: Ceratopogonidae). AHSV affects draft, thoroughbred, and companion horses and donkeys in Africa, Asia, and Europe. In this review, we examine the impact of AHSV critically and discuss entomological studies that have been conducted to improve understanding of its epidemiology and control. The transmission of AHSV remains a major research focus and we critically review studies that have implicated both Culicoides and other blood-feeding arthropods in this process. We explore AHSV both as an epidemic pathogen and within its endemic range as a barrier to development, an area of interest that has been underrepresented in studies of the virus to date. By discussing AHSV transmission in the African republics of South Africa and Senegal, we provide a more balanced view of the virus as a threat to equids in a diverse range of settings, thus leading to a discussion of key areas in which our knowledge of transmission could be improved. The use of entomological data to detect, predict and control AHSV is also examined, including reference to existing studies carried out during unprecedented outbreaks of bluetongue virus in Europe, an arbovirus of wild and domestic ruminants also transmitted by Culicoides.


Assuntos
Doença Equina Africana/história , Doença Equina Africana/transmissão , Ceratopogonidae/virologia , Equidae , Doenças dos Cavalos/história , Doenças dos Cavalos/transmissão , África , Doença Equina Africana/virologia , Vírus da Doença Equina Africana , Animais , Ásia , Europa (Continente) , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Medieval , Doenças dos Cavalos/virologia , Cavalos , Senegal , África do Sul
18.
PLoS One ; 11(12): e0168799, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28006007

RESUMO

One of the challenges to maintain tsetse fly (Diptera: Glossinidae) colonies is the sustainable supply of high quality blood meals. The effect of using anticoagulants during collection of the blood, the addition of phagostimulants to the blood meals as well as using mixtures of bovine and porcine blood in different proportions for feeding on colony productivity was assessed. Defibrinated bovine blood was found to be suitable to maintain both the Glossina brevipalpis Newstead and Glossina austeni Newstead colonies. Blood collected with the anticoagulants sodium citrate, citric sodium combination, citrate phosphate dextrose adenine and citric acid did not affect colony performance of both species. Defibrinated bovine and porcine blood in a 1:1 ratio or the feeding of either bovine or porcine blood on alternating days improved pupae production of G. austeni and can be used to enhance colony growth. Bovine blood is appropriate to maintain G. brevipalpis colonies, however, feeding either bovine or porcine blood on alternating days did improve productivity. Adding the phagostimulants inosine tri-phosphate, cytosine mono-phosphate and guanosine mono-phosphate to the blood at a concentration of 10-4 M improved pupae production of the G. brevipalpis colony. The addition of adenosine tri-phosphate and inosine tri-phosphate improved the performance of the G. austeni colony. Decisions on the most suitable rearing diet and feeding protocols will not only depend on the biological requirements of the species but also on the continuous supply of a suitable blood source that can be collected and processed in a cost-effective way.


Assuntos
Ração Animal/normas , Coleta de Amostras Sanguíneas/normas , Comportamento Alimentar/fisiologia , Controle de Insetos/métodos , Moscas Tsé-Tsé/fisiologia , Animais , Bovinos , Feminino , Masculino , Suínos
19.
Vet Ital ; 52(3-4): 281-289, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27723037

RESUMO

The seasonal abundance of Culicoides midges, the vector of Bluetongue and African horse sickness viruses (BTV/AHSV) and the presence of viruses in midges were determined in 3 geographic areas in South Africa. In the Onderstepoort area, more than 500,000 Culicoides midges belonging to 27 species were collected. Eighteen midge species were collected throughout Winter and the presence of AHSV and BTV RNA in midges was detected using real time reverse transcription quantitative polymerase chain reaction. The nucleic acid of AHSV was found in 12 pools out of total pools of 35 Culicoides. Twenty­five Culicoides species were detected in the Mnisi area. The RNA of BTV was detected in 75.9% of the midge pools collected during Winter and 51.2% of those collected during Autumn. Antibodies for BTV were detected in 95% of cattle sampled using a competitive enzyme­linked immunosorbent assay (cELISA). The dominant species in these 2 areas was Culicoides imicola. Eight Culicoides species were collected in Namaqualand. Culicoides imicola represented the 0.9% and Culicoides bolitinos the 1.5% of total catches, respectively. Antibodies for AHSV were detected in 4.4% of 874 equines tested using an indirect ELISA. Results showed that transmission of AHSV and BTV can carry on throughout Winter and the outbreak may begin as soon as Culicoides populations reach a certain critical level.


Assuntos
Vírus da Doença Equina Africana , Distribuição Animal , Bluetongue , Ceratopogonidae/virologia , Insetos Vetores/virologia , Animais , Clima , África do Sul
20.
Acta Trop ; 163: 70-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27491343

RESUMO

African horse sickness (AHS) is one of the most lethal infectious, non-contagious, vector-borne disease of equids. The causative agent, African horse sickness virus (AHSV) is transmitted via Culicoides midges (Diptera: Ceratopogonidae). AHS is endemic to Namibia but detailed studies of Culicoides communities and influencing environmental parameters are limited. This study aims to determine the Culicoides species composition at three different sites and to assess environmental parameters influencing the geographical distribution of AHS in Namibia. Weekly collections of Culicoides were made during the AHS peak season from January to May for 2013 and 2014 using the Onderstepoort 220V UV-light trap. Out of 397 collections made, 124 collections (3287 Culicoides) were analysed for AHSV presence with RT-qPCR. A total of 295 collections were analysed for total Culicoides (all collected Culicoides individuals) and in 75% of these collections the Culicoides were identified to species level. C. imicola was the dominant species with proportional representation of 29.9%. C. subschultzei, C. exspectator and C. ravus each contribute more than 10% to the species composition. The lowest number of Culicoides was collected at Aus 9980, a total of 21819 at Windhoek and the highest number at Okahandja 47343. AHSV was present at all three sites during 2013 but only in Windhoek and Okahandja during 2014. Multivariate analyses of data from the two year survey indicate the environmental parameters in order of importance for the distribution of AHS in Namibia as precipitation>temperature>clay>relative humidity>NDVI. The implication of these findings is that any precipitation event increases Culicoides numbers significantly. Together with these results the high number of species found of which little is known regarding their vector competence, add to the complexity of the distribution of AHS in Namibia.


Assuntos
Vírus da Doença Equina Africana/crescimento & desenvolvimento , Doença Equina Africana/epidemiologia , Ceratopogonidae/virologia , RNA Viral/análise , Silicatos de Alumínio , Animais , Argila , Cavalos , Humanos , Umidade , Namíbia/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...